
AP Computer Science A – Unit 09: Inheritance English Name: ____________________

Example: Person-Student ©2025 Chris Nielsen – www.nielsenedu.com

Consider the following two classes.

Person Class Student Class

public class Person {

 private String name;

 public Person(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @Override
 public String toString() {
 return name;
 }

}

public class Student extends Person {

 private int studentNumber;

 public Student(int studentNumber,
 String name) {
 super(name);
 this.studentNumber =
 studentNumber;
 }

 public int getStudentNumber() {
 return studentNumber;
 }

 @Override
 public String toString() {
 return studentNumber + " - " +
 super.toString();
 }

}

And now consider the following code in the same package as the above two classes.

Test code Output

1
2

3
4

5
6
7

8
9
10
11

Person p = new Person("Chris");
System.out.println(p);

p = new Student(20250123, "Betty");
System.out.println(p);

Student s = new Student(20250124,
 "Aurthur");
System.out.println(s);

System.out.println(s.getName());
System.out.println(s.getStudentNumber());
System.out.println(p.getName());
System.out.println(p.getStudentNumber());

The final line of the test code, line 11, results in an error – but why? The output of the error will be
something similar to:

The method getStudentNumber() is undefined for the type Person

This is a compile-time error. During compilation, the compiler checks methods that are called on
variables. Even though the object is of type Student, the reference variable, p that points to it is
of type Person. The Person class does not have a getStudentNumber method, so the
compiler flags it as an error and the code fails to compile – meaning it will not even reach the run-
time phase.

Page 1 of 1

